A prognostic model for lung adenocarcinoma patient survival with a focus on four miRNAs

نویسندگان

  • Xianqiu Li
  • Zhaoling An
  • Peihui Li
  • Haihua Liu
چکیده

There is currently no effective biomarker for determining the survival of patients with lung adenocarcinoma. The purpose of the present study was to construct a prognostic survival model using microRNA (miRNA) expression data from patients with lung adenocarcinoma. miRNA data were obtained from The Cancer Genome Atlas, and patients with lung adenocarcinoma were divided into either the training or validation set based on the random allocation principle. The prognostic model focusing on miRNA was constructed, and patients were divided into high-risk or low-risk groups as per the scores, to assess their survival time. The 5-year survival rate from the subgroups within the high- and low-risk groups was assessed. P-values of the prognostic model in the total population, the training set and validation set were 0.0017, 0.01986 and 0.02773, respectively, indicating that the survival time of the lung adenocarcinoma high-risk group was less than that of the low-risk group. Thus, the model had a good assessment effectiveness for the untreated group (P=0.00088) and the Caucasian patient group (P=0.00043). In addition, the model had the best prediction effect for the 5-year survival rate of the Caucasian patient group (AUC=0.629). In conclusion, the prognostic model developed in the present study can be used as an independent prognostic model for patients with lung adenocarcinoma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Four-miRNA signature as a prognostic tool for lung adenocarcinoma

Purpose The aim of this study was to generate a novel miRNA expression signature to accurately predict prognosis for patients with lung adenocarcinoma (LUAD). Patients and methods Using expression profiles downloaded from The Cancer Genome Atlas database, we identified multiple miRNAs with differential expression between LUAD and paired healthy tissues. We then evaluated the prognostic values...

متن کامل

The Effect of Time-dependent Prognostic Factors on Survival of Non-Small Cell Lung Cancer using Bayesian Extended Cox Model

  Abstract Background: Lung cancer is one of the most common cancers around the world. The aim of this study was to use Extended Cox Model (ECM) with Bayesian approach to survey the behavior of potential time-varying prognostic factors of Non-small cell lung cancer. Materials and Methods: Survival status of all 190 patients diagnosed with Non-Small Cell lung cancer referring to hospitals in ...

متن کامل

Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer

Exosomal miRNAs are proposed as excellent candidate biomarkers for clinical applications. However, little is known about their potential roles as prognostic biomarkers in lung cancer. In this study, we explored the prognostic value of plasma exosomal microRNAs (miRNAs) for non-small-cell lung cancer (NSCLC). Using a quantitative polymerase chain reaction (qPCR) array panel, we analyzed 84 plasm...

متن کامل

Identification of microRNAs as potential biomarkers for lung adenocarcinoma using integrating genomics analysis

Lung adenocarcinoma (LUAD) is the most common histological subtype of non-small cell lung cancer, but novel biomarkers for early diagnosis are lacking. Extensive effort has been exerted to identify miRNA biomarkers in LUAD. Unfortunately, high inter-lab variability and small sample sizes have produced inconsistent conclusions in this field. To resolve the above-mentioned limitations, we perform...

متن کامل

Identification of microRNA differentially expressed in three subtypes of non-small cell lung cancer and in silico functional analysis

Emerging studies demonstrated that miRNAs played fundamental roles in lung cancer. In this study, we attempted to explore the clinical significance of the miRNA signature in different histological subtypes of non-small cell lung cancer (NSCLC). Three miRNome profiling datasets (GSE19945, GSE25508 and GSE51853) containing lung squamous cell carcinoma (SCC), lung adenocarcinoma (ADC) and large ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017